

Ad _____ Soyad ____

10-11 KIMYA

YUXARI YAŞ QRUPU

RUS BÖLMƏSİ

- İmtahan müddəti 180 dəqiqədir.
- Hər səhv cavab öz dəyərinin 1/4 ni aparır.
- 1-10-cu suallar 3, 11-20-ci suallar 4, 21-30-cu suallar 5 balla qiymətləndirilir.
- Nəzarətçilərə cavab kağızları və buraxılış vərəqələri təqdim olunur.
- Sual kitabçasında hər hansı texniki qüsur aşkarlandığı və kitabçanın şagirdin məlumatlarına uyğun olmadığı halda (fənn, bölmə, sinif) imtahandan əvvəl mütləq otaq nəzarətçisinə bildirilməlidir.
- Yarımfinal turunun nəticələrini 04.03.2025-ci il tarixindən etibarən portal.edu.az platformasında şəxsi kabinetinizdən və təhsil aldığınız ümumtəhsil müəssisəsindən öyrənə bilərsiniz.

Uğurlar!

Константы

Постоянная Авогадро, $N_a = 6.0221 \times 10^{23} \text{ моль}^{-1}$

Универсальная газовая постоянная, $R = 8.3145~\text{Дж}\cdot\text{K}^{\text{-1}}\cdot\text{моль}^{\text{-1}} = 0.08205~\text{атм}\cdot\text{л}\cdot\text{K}^{\text{-1}}~\text{моль}^{\text{-1}}$

Постоянная Фарадея, $F = 9.64853399 \times 10^4$ Кл ·моль-1

Постоянная Больцмана $k_{\rm B} = 1.3807 \times 10^{-23} \, \rm Дж \cdot K^{-1}$

Скорость света $c = 2.9979 \times 108 \text{ м} \cdot \text{c}^{-1}$

Постоянная Планка $h = 6.6261 \times 10 - 34 \, \text{Дж} \cdot \text{с}$

Масса электрона равна $m_e = 9.10938215 \times 10^{-31} \text{ кг}$

1 пикометр (пм) 10^{-12} м; $1Å = 10^{-10}$ м

1 нанометр (нм) 10^{-9} м

Электронвольт (эВ) $1 \text{ эВ} = 1.6 \times 10^{-19} \text{ Кл}$

Калория (кал) 1 кал = 4.184 Дж

Атомная единица массы (а.е.м.) 1 $a.е.м = 1.66053904 \times 10^{-27}$ кг

Заряд электрона равен $1.602176634 \times 10^{-19}$ Кл

Стандартное давление, P = 1 бар = 10^5 Па= 0.987 атм

Атмосферное давление, $P_{atm} = 1.01325 \times 10^5 \, \Pi a = 760 \, \text{мм.рт.ст.} = 760 \, \text{торр}$

Ноль по шкале Цельсия, 273.15 К

Понятие	Уравнение
Закон идеального газа	pV = nRT = NkBT
	$\Delta G = \Delta H - T\Delta S$
	$\Delta G^{\circ} = -RT \text{ In } K^{\circ}$
Изменение энергии Гиббса	$\Delta rG^{\circ} = -nFE^{\circ}$
-	n - количество электронов
	$\Delta_r G = \Delta_r G^\circ + RT \ln Q$
Отношение Q для реакции	$Q = [C]^{c} [D]^{d} / [A]^{a} [B]^{b}$
Уравнение Нернста	$E = E^{\circ} - (RT / nF) \ln Q$
Сила тока	I = Q / t
Уравнение Фарадея	$I \cdot t = n \cdot z \cdot F$
Закон Рауля	$P_{A} = P^{\circ}_{A} \cdot \phi_{A}, \phi_{A} - $ мольная доля
	А в растворе
Закон Аррениуса	$k = A \exp(-E_A / RT)$
Уравнение Ламберта-Бэра	$A = \epsilon Ic$
Повышение температуры кипения.	$\Delta T_{\kappa} = K_{\mathfrak{I}} \cdot m$, m — моляльная
	концентрация
Энергия фотона	$E = hv = hc / \lambda$
Интегрированные кинетические уравнения	
0-го порядка	$[A] = [A]_0 - kt$
1-го порядка	$ln[A] = ln[A]_0 - kt$
2-го порядка	$1/[A] = 1/[A]_0 + kt$
Период полураспада для реакции 1-го порядка	$t_1/_2 = \ln 2 / k$
Период полураспада для реакции 2-го порядка	$t_1/_2 = 1 / [A]_0 k$
Радиоактивность	$A = k \cdot N$
Энтропия	
При постоянном давлении	$\Delta S = nC_p In(T_2/T_1)$
При постоянном объеме	$\Delta S = nC_V ln(T_2/T_1)$
При фазовых переходах	$\Delta S = n\Delta H/T$

1 IA 11A	1	ПЕ	РИОДИ	ІЧЕСК	АЯ СИ	СТЕМ	А ХИМ	ичес	ких з	ЛЕМЕ	нтов						18 VIIIA 8A
H 1.008	2 IIA 2A											13 IIIA 3A	14 IVA 4A	15 VA 5A	16 VIA 6A	17 VIIA 7A	He 4,003
3 Li 6.941	Be 9.012											5 B 10.811	6 C	7 N 14,007	8 O 15.999	9 F 18,998	Ne 20.180
11 Na 22.990	12 Mg 24.305	3 IIIB 3B	4 IVB 4B	5 VB 5B	6 VIB 6B	7 VIIB 7B	8	— yılı —	10	11 IB 1B	12 IIB 2B	13 AI 26.982	14 Si 28.086	15 P 30.974	16 S 32.066	17 CI 35,453	18 Ar 39.948
19 K	Ca	Sc	Ti	²³ V	²⁴ Cr	Mn	Fe	Co	Ni Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 37 Rb 84.468	38 Sr 87.62	44.956 39 Y 88.906	47.88 40 Zr 91.224	50.942 41 Nb 92.906	51.996 42 Mo	54.938 43 Tc 98.907	55.933 44 Ru 101.07	58.933 45 Rh	58.693 46 Pd	47 Ag 107.868	65.39 48 Cd	69.732 49 In	50 Sn	74.922 51 Sb	78.09 52 Te	79.904 53 1 126.904	54 Xe 131.29
Cs 132.905	56 Ba	57-71	72 Hf	73 Ta	74 W 183.85	75 Re	76 Os	77 Ir	78 Pt	79 Au 196.967	80 Hg	81 TI 204.383	Pb 207.2	83 Bi 208.980	Po [208.982]	85 At 209.987	86 Rn 222.018
87 Fr	**Ra	89-103	Rf	105 Db	Sg	107 Bh	108 Hs	109 M t	Ds	Rg	Cn	Uut	FI	Uup	116	Uus	Uuo
223.020	226.025		[261]	[262]	[266]	[264]	[269]	[268]	[269]	[272]	[277]	15	[289]	Value Octivity	[298]	1.57	

Лантаноиды

Актиноиды

La 138.906	Ce	59 Pr	Nd	Pm 144.913	5m	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu
89 Ac	90	91	92	93 Np	94	95	96	97	98	99	100	101	102	103
227.028	232.038	231.036	238.029	237.048	244.064	243.061	247.070	247.070	251.080	[254]	257.095	258.1	259.101	[262]

	I. Выберите вещество, у которого вокруг центрального атома расположено 5 пар электронов:
((A) CIF ₅ B) CO ₂ C) CH ₄ D) SiO ₂ E) P ₂ O ₅
	2. Какое из следующих утверждений о структуре Льюиса трихлорида азота является верным?
((А) Структура имеет 3 связи N=Cl и 6 неподеленных электронных пар. В) Структура имеет 1 связь N-Cl, 2 связи N=Cl и 7 неподеленных электронных пар. С) Структура имеет 2 связи N-Cl, 1 связь N=Cl и 8 неподеленных электронных пар. С) Структура имеет 3 связи N – Cl и 9 электронных пар. Е) Структура имеет 3 связи N – Cl и 10 неподеленных электронных пар.
3	3. Метанол получают в основном в результате реакции монооксида углерода с газообразным водородом. Сколько газообразного водорода при давлении 300 атм при 350 °C должно вступить в реакцию, чтобы при 20 °C синтезировался 1 литр метанола? Известно, что выход реакции составляет 95%, а плотность метанола при 20 °C составляет 0.8 г/мл.
((A) 0.89 л B) 2.5 л C) 5.0 л D) 7.2 л E) 9.0 л

- **4.** Максимум сколько граммов аммиака можно синтезировать из 1 грамма азота и 3 граммов водорода? Предположите, что реакция протекает только в направлении образования аммиака.
- A) 0.61
- B) 1.21
- C) 4.20
- D) 3.21
- E) 1.65
- **5.** Что из перечисленного нельзя получить окислением PF₃?
- A) $Na_4P_2O_7 \cdot 10H_2O$
- B) $H_4P_2O_7$
- C) KPF_6
- D) $(NH_4)_2HPO_3 \cdot H_2O$
- E) $Ca_5(PO_4)_3F$
- **6.** 20.00 мл 20% ного (по массе) раствора дихлорметана получали путем смешивания воды с чистым дихлорметаном. Какое было объемное соотношение дихлорметана и воды при смешивании? $\rho(\text{вода}) = 1 \text{ г/мл}$, $\rho(\text{дихлорметан}) = 1.33 \text{ г/мл}$
- A) 1:3.3
- B) 1:5.3
- C) 1:7.3
- D) 1:10.8
- Е) Предоставленных данных недостаточно для получения ответа.

B) C) D)	3d ³ 4s ² 3d ⁴ 4s ¹ 3d ⁶ 4s ² 3d ⁴ 4s ²
8.	Какая кислота имеет самый высокий pH в растворах одинаковой концентрации?
B) C) D)	HF HCI HI HNO ₃ H ₂ SO ₄
	Какая из следующих величин не может быть массовой долей хлора в MCl ₂ , ориде металла M?
B) C)	88.73% 74.47% 63.89% 34.05% 83.50%

7. В каком варианте электронная конфигурация Fe³⁺ приведена правильно?

10. Стандартные полиэтиленовые пакеты имеют среднюю массу 12.4 грамма. Сколько
молекул этилена полимеризовалось при изготовлении такого пакета?
A) 1.36×10^{24}
B) 6.02×10^{23}
C) 5.33×10^{23}
D) 4.56×10^{24}
E) 2.67×10^{23}

- **11.** При нагревании уксусной кислоты с избытком какого вещества можно получить ацетон?
- A) NaOH
- B) Ca(OH)₂
- C) H₂SO₄
- D) H₃PO₄
- Е) Ни один из перечисленных.

12. Название вещества, приведенное ниже, — это бицикло [3.1.1] гептан.

На основе этой информации определите название следующего вещества.

- А) бицикло [1.2.4] октан
- В) бицикло [3.4.6] нонан
- С) циклопропанциклобутанциклогексан
- D) бицикло [4.2.1] нонан
- Е) бицикло [4.3] декан
- **13.** Каков рН в растворе слабой одноосновной кислоты с концентрацией 0.01 M, диссоциирующей на 4.0%?
- A) 2.00
- B) 2.40
- C) 2.80
- D) 3.40
- E) 7.00

- **14.** Органическое вещество с 4 атомами углерода по массе состоит из 55.1% углерода, 10.34% водорода и 18.4% кислорода. Какая из следующих функциональных групп не может присутствовать в составе этого вещества?
- А) спирт
- В) карбоксильная группа
- С) амид
- D) алкен
- Е) кетон
- **15.** Смешиваются водные растворы HCl и аммиака одинаковой концентрации и одинакового объема. Какой будет pH полученного раствора? $K_{\rm вода}=10^{-14}$
- A) pH > 7
- B) pH < 7
- C) pH = 7
- D) pH < 0
- Е) Ни один из перечисленных
- **16.** «Тройная точка» на фазовой диаграмме представляет собой точку, в которой находятся газ, жидкость и твёрдое состояние вещества в равновесии. Какое из следующих сравнений относительно энергий Гиббса в «тройной точке» диаграммы состояния воды является верным?
- А) $G_{\text{твердое}}^{0} < G_{\text{газ}}^{0} < G_{\text{жидкость}}^{0}$
- B) $G_{\text{твердое}}^{0} < G_{\text{жидкость}}^{0} < G_{\text{газ}}^{0}$
- C) $G_{\text{твердое}}^0 = G_{\text{жидкость}}^0 < G_{\text{газ}}^0$
- D) $G_{\text{твердое}}^0 < G_{\text{жидкость}}^0 = G_{\text{газ}}^0$
- E) $G_{\text{твердое}}^{0} = G_{\text{жидкость}}^{0} = G_{\text{газ}}^{0}$

- **17.** При постоянном давлении 196 кПа газообразный гелий расширяется изобарно обратимо от 5 литров до 10 литров. Рассчитайте внутреннее изменение энергии системы (в Джоулях. $C_{V,m}(He)=\frac{3}{2}R$
- A) 735
- B) 1470
- C) 1742
- D) 2754
- E) 2984

18. Определите реагент.

- A) LiAlH₄
- B) NaBH₄
- C) DIBAL-H $((i Bu_2AlH)_2)$
- D) BF₃-OEt
- E) HCIO₄

19. В закрытом сосуде объёмом 1 литр нагревают до 850 Кельвинов 80 граммов CaCO₃.

$$CaCO_{3(TB)} = CaO_{(TB)} + CO_{2(\Gamma)}$$

Давление CO_2 в сосуде во время равновесия было измерено как 20 торр. Если эксперимент повторить в тех же условиях, но с 160 граммами $CaCO_3$, какое из следующих утверждений о давлении в сосуде будет верным?

- A) 10 topp < P < 20 topp
- В) Р = 20 торр
- C) 20 торр < P < 40 торр
- D) P = 40 торр
- Е) Ни один из перечисленных

- 20. Выберите тот, который имеет самую высокую вторую энергию ионизации.
- A) Ge
- B) As
- C) Se
- D) Br
- E) Te

21. Рассчитайте константу равновесия при 25°C следующей реакции на основе заданных стандартных электродных потенциалов. $E^0\left(\frac{Cu^{2+}}{Cu}\right)=0.34~\mathrm{B}$, $E^0\left(\frac{Cu^{2+}}{Cu^+}\right)=0.15~\mathrm{B}$

$$2Cu^+ = Cu + Cu^{2+}$$

- A) 7.14×10^{12}
- B) 2.67×10^6
- C) 5.26×10^{11}
- D) 6.39×10^7
- E) 3.75×10^6

22. Укажите порядок увеличения реакционной способности в реакции электрофильного ароматического замещения.

- A) III, II, I, IV
- B) II, III, IV, I
- C) II, III, I, IV
- D) III, I, II, IV
- E) III, IV, I, II

23. В приведённой ниже таблице представлены значения стандартной энтальпии и энтропии для реакций гидролиза 5 различных дисахаридов, измеренные при температуре 298 Кельвинов:

	$\Delta H^0 \left(\frac{\kappa \mathcal{J} \mathcal{K}}{MOЛЬ} \right)$	$\Delta S^0 \left(\frac{\mathcal{A}_{MOJNb}}{MOJNb \cdot K} \right)$
Лактулоза	2.2	49
Трегалоза	4.7	57
Мелибиоз	-0.8	37
Селлебиоз	-2.4	34
Арабиноза	0.8	42

Среди перечисленных дисахаридов у какого вещества константа равновесия реакции гидролиза при 298 Кельвинах будет наибольшей?

- А) Лактулоза
- В) Трегалоза
- С) Мелибиоз
- D) Селлебиоз
- Е) Арабиноза

24. Известно, что при гидролизе трегалозы получают две молекулы глюкозы. Какая из следующих химических формул трегалозы?

- A) C₁₂H₂₄O₁₂
- B) C₁₂H₂₂O₁₂
- C) $C_{11}H_{22}O_{12}$
- D) $C_{12}H_{22}O_{10}$
- Е) Ни один из перечисленных

25. Зависимость константы равновесия определённой химической реакции от температуры выражается следующим уравнением:

$$\ln(K_p) = 50 - \frac{1000}{T}$$

Чему равно изменение стандартной энтальпии для этой реакции? Учтите, что изменение энтальпии и энтропии этой реакции не зависит от температуры.

- А) 50 Дж/моль
- В) 1000 Дж/моль
- С) 415.75 Дж/моль
- D) 8314.5 Дж/моль
- E) 166.29 Дж/моль
- **26.** Изучается кинетика реакции разложения пероксида водорода с участием фермента каталазы:
- 1) Готовят четыре образца раствора пероксида водорода одинаковой концентрации и объёма.
- 2) Первый образец используют для измерения начальной концентрации. Этот образец титруют раствором KMnO₄ концентрацией 0.1 M до появления темнофиолетового окрашивания в основном растворе. На титрование уходит 23.4 мл раствора KMnO₄.
- 3) Во второй и третий образцы добавляют фермент каталазу. Через 10 и 15 секунд после начала реакции образцы титруют теми же растворами КМnO₄. Расходуется соответственно 15.4 мл и 12.5 мл объема титранта.
- 4) В четвёртый образец добавляют фермент каталазу. Спустя 25 секунд после начала реакции образец титруют тем же раствором KMnO₄. Объем использованного титранта составляет X мл.

На основании этой информации рассчитайте порядок реакции разложения пероксида водорода и значение X.

А) 1-й порядок; 9.4 мл

В) 0-ой порядок; 21.3 мл

С) 1-й порядок; 8.2 мл

D) 2-ой порядок; 5.6 мл

Е) 2-ой порядок; 4.3 мл

27. 1000 грамм льда нагревают от −5 °C до 20 °C при постоянном давлении 1 атм. Рассчитайте изменение энтропии процесса (в Дж/К).

$$\Delta H_{\text{плавление}} = 6008 \frac{\text{Дж}}{\text{моль}} \text{ , } \mathcal{C} \big(H_2 O_{\text{(тв)}} \big) = 34.7 \frac{\text{Дж}}{\text{моль} \cdot K} \text{, } \mathcal{C} \big(H_2 O_{\text{(жидкость)}} \big) = 75.3 \frac{\text{Дж}}{\text{моль} \cdot K}$$

- A) 1553.18
- B) 1746.7
- C) 1243.1
- D) 992.3
- E) 2438.7

28. Смесь бензола и толуола кипит при атмосферном давлении при 100°С. Давление пара бензола и толуола при 100°С составляет 1350 и 556 Торр соответственно. Рассчитайте мольную долю бензола в паровой фазе смеси при данной температуре.

- A) 0.544
- B) 0.456
- C) 0.743
- D) 0.257
- E) 0.500

29. Рассчитайте значение ЭДС для следующей электрохимической ячейки при 25 °C.

$$Pt, H_2|CH_3COOH(c_1=1M)||HCOOH(c_2=1M)|H_2, Pt$$

$$K_A(CH_3COOH) = 1.75 \times 10^{-5}; K_A(HCOOH) = 1.77 \times 10^{-4}$$

- A) 0.013 B
- B) 0.030 B
- C) 0.039 B
- D) 0.048 B
- E) 0.067 B

30. Сколько стереоизомеров у молекулы Эритронолида В?

- A) 128
- B) 256
- C) 512
- D) 1024
- E) 2048